We report on the dynamics of collective alignment in groups of the cichlid fish Etroplus suratensis. Focusing on small- to intermediate-sized groups (10 ≲ N ≲ 100), we demonstrate that schooling (highly polarized and coherent motion) is noise induced, arising from the intrinsic stochasticity associated with finite numbers of interacting fish. The fewer the fish, the greater the (multiplicative) noise and therefore the greater the likelihood of alignment. Such rare empirical evidence tightly constrains the possible underlying interactions that govern fish alignment, suggesting that E. suratensis either spontaneously change their direction or copy the direction of another fish, without any local averaging (the otherwise canonical mechanism of...