Modern embedded systems are in charge of an increasing number of tasks that extensively employ floating-point (FP)computations. The ever-increasing efficiency requirement, coupled with the additional computational effort to perform FP computations, motivates several microarchitectural optimizations of the FPU. This manuscript presents a novel modular FPU microarchitecture, which targets modern embedded systems and considers heterogeneous workloads including both best-effort and accuracy-sensitive applications. The design optimizes the EDP-accuracy-area figure of merit by allowing, at design-time, to independently configure the precision of each FP operation, while the FP dynamic range is kept common to the enti...