Social network providers anonymize graphs storing users' relationships to protect users from being re-identified. Despite the fact that most of the relationships are directed (e.g., follows), few works (e.g., the Paired-degree [1] and K-In&Out-Degree Anonymity [2]) have been designed to work with directed graphs. In this paper, we show that given a graph, DGA [1]and DSNDG-KIODA [2] are not always able to generate its anonymized version. We overcome this limitation by presenting the Cluster-based Directed Graph Anonymization Algorithm(CDGA) and prove that, by choosing the appropriate parameters, CDGA can generate an anonymized graph satisfying both the Paired k-degree [1] and K-In&Out-Degree Anonymity [2]. Also, we present the Out-an...