We investigate the behavior of the constants of the polynomial Hardy-Littlewood inequality
AbstractUsing Moser's iteration method, we investigate the local boundedness of solutions for p(x)-L...
AbstractThere is a series of publications which have considered inequalities of Markov–Bernstein–Nik...
We deduce an inequality using elementary methods which makes it possible to prove a conjecture reg...
AbstractA polynomial f of degree at most n is said to be ‘self-reciprocal’ if f(z)≡znf(1/z). In this...
In this paper, we extend an inequality concerning the polar derivative of a polynomial in Lp-norm t...
* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Inst...
By introducing multi-parameters and conjugate exponents and using Euler-Maclaurin’s summation formul...
AbstractIn this paper, the author has investigated trigonometrical polynomials associated with f∈Lip...
By introducing multi-parameters and conjugate exponents and using Euler-Maclaurin’s summation formul...
In this paper we obtain quite general and definitive forms for Hardy–Littlewood type inequalities. M...
AbstractNew lower bounds are given for the sum of degrees of simple and distinct irreducible factors...
In the paper, by virtue of the convolution theorem for the Laplace transforms, with the aid of three...
AbstractThe main topic of the paper is best constants in Markov-type inequalities between the norms ...
In this paper, the order of simultaneous approximation, convergence results of the iterates and shap...
In this paper, by introducing some parameters, we define and study several new Hardy-Littlewood-P\'o...
AbstractUsing Moser's iteration method, we investigate the local boundedness of solutions for p(x)-L...
AbstractThere is a series of publications which have considered inequalities of Markov–Bernstein–Nik...
We deduce an inequality using elementary methods which makes it possible to prove a conjecture reg...
AbstractA polynomial f of degree at most n is said to be ‘self-reciprocal’ if f(z)≡znf(1/z). In this...
In this paper, we extend an inequality concerning the polar derivative of a polynomial in Lp-norm t...
* The second author is supported by the Alexander-von-Humboldt Foundation. He is on leave from: Inst...
By introducing multi-parameters and conjugate exponents and using Euler-Maclaurin’s summation formul...
AbstractIn this paper, the author has investigated trigonometrical polynomials associated with f∈Lip...
By introducing multi-parameters and conjugate exponents and using Euler-Maclaurin’s summation formul...
In this paper we obtain quite general and definitive forms for Hardy–Littlewood type inequalities. M...
AbstractNew lower bounds are given for the sum of degrees of simple and distinct irreducible factors...
In the paper, by virtue of the convolution theorem for the Laplace transforms, with the aid of three...
AbstractThe main topic of the paper is best constants in Markov-type inequalities between the norms ...
In this paper, the order of simultaneous approximation, convergence results of the iterates and shap...
In this paper, by introducing some parameters, we define and study several new Hardy-Littlewood-P\'o...
AbstractUsing Moser's iteration method, we investigate the local boundedness of solutions for p(x)-L...
AbstractThere is a series of publications which have considered inequalities of Markov–Bernstein–Nik...
We deduce an inequality using elementary methods which makes it possible to prove a conjecture reg...