A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency-dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia. Earlier work has shown that males preferentially attack the males of their own morph, while red males are more likely to win dyadic contests with blue males. In order to study the potential contribution of both factors to the morph co-existence, we manipulated the proportion of red and blue males in experimental assemblages and studied its effect on social dominance. We then tried to disentangle the effects of the own-morph attack bias and social...