After more than a decade of phrase-based systems dominating the scene of machine translation, neural machine translation has emerged as the new machine translation paradigm. Not only does state-of-the-art neural machine translation demonstrate superior performance compared to conventional phrase-based systems, but it also presents an elegant end-to-end model that captures complex dependencies between source and target words. Neural machine translation offers a simpler modeling pipeline, making its adoption appealing both for practical and scientific reasons. Concepts like word alignment, which is a core component of phrase-based systems, are no longer required in neural machine translation. While this simplicity is viewed as an advantage, d...