This paper is a continuation of [10], where P. Erdos, A. Hajnal, V. T. Sos. and E. Szemeredi investigated the following problem: Assume that a so called forbidden graph L and a function f(n) = o(n) are fixed. What is the maximum number of edges a graph G(n) on n vertices can have without containing L as a subgraph, and also without having more than f(n) independent vertices? This problem is motivated by the classical Turan and Ramsey theorems, and also by some applications of the Turin theorem to geometry, analysis (in particular, potential theory) [27 29], [11-13]. In this paper we are primarily interested in the following problem. Let (G(n)) be a graph sequence where G(n) has n vertices and the edges of G(n) are coloured by the c...