Newtonian and Schrodinger dynamics can be formulated in a physically meaningful way within the same Hilbert space framework. This fact was recently used to discover an unexpected relation between classical and quantum motions that goes beyond the results provided by the Ehrenfest theorem. The Newtonian dynamics was shown to be the Schrodinger dynamics of states constrained to a submanifold of the space of states, identified with the classical phase space of the system. Quantum observables are identified with vector fields on the space of states. The commutators of observables are expressed through the curvature of the space. The resulting embedding of the Newtonian and Schrodinger dynamics into a unified geometric framework is rigid in the ...