A growing number of studies report interesting insights gained from existing data resources. Among those, there are analyses on textual data, giving reason to consider such methods for linguistics as well. However, the field of corpus linguistics usually works with purposefully collected, representative language samples that aim to answer only a limited set of research questions. This thesis aims to shed some light on the potentials of data-driven analysis based on machine learning and predictive modelling for corpus linguistic studies, investigating the possibility to repurpose existing German language corpora for linguistic inquiry by using methodologies developed for data science and computational linguistics. The study focuses on pred...