Humans are able to seamlessly integrate tactile and visual stimuli with their intuitions to explore and execute complex manipulation skills. They not only see but also feel their actions. Most current robotic learning methodologies exploit recent progress in computer vision and deep learning to acquire data-hungry pixel-to-action policies. These methodologies do not exploit intuitive latent structure in physics or tactile signatures. Tactile reasoning is omnipresent in the animal kingdom, yet it is underdeveloped in robotic manipulation. Tactile stimuli are only acquired through invasive interaction, and interpretation of the data stream together with visual stimuli is challenging. Here, we propose a methodology to emulate hierarchical reas...