As robots find applications in more complex roles, ranging from search and rescue to healthcare and services, they must be robust to greater levels of localization uncertainty and uncertainty about their environments. Without consideration for such uncertainties, robots will not be able to compensate accordingly, potentially leading to mission failure or injury to bystanders. This work addresses the task of searching a 2D area while reducing localization uncertainty. Wherein, the environment provides low uncertainty pose updates from beacons with a short range, covering only part of the environment. Otherwise the robot localizes using dead reckoning, relying on wheel encoder and yaw rate information from a gyroscope. As such, outside of the...