Understanding the difference between group orbits and their closures is a key difficulty in geometric complexity theory (GCT): While the GCT program is set up to separate certain orbit closures, many beautiful mathematical properties are only known for the group orbits, in particular close relations with symmetry groups and invariant spaces, while the orbit closures seem much more difficult to understand. However, in order to prove lower bounds in algebraic complexity theory, considering group orbits is not enough. In this paper we tighten the relationship between the orbit of the power sum polynomial and its closure, so that we can separate this orbit closure from the orbit closure of the product of variables by just considering the symm...