In a series of recent papers, a special kind of AdS2/CFT1 duality was observed: the boundary correlators of elementary fields that appear in the Lagrangian of a 2d conformal theory in rigid AdS2 background are the same as the correlators of the corresponding primary operators in the chiral half of that 2d CFT in flat space restricted to the real line. The examples considered were: (i) the Liouville theory where the operator dual to the Liouville scalar in AdS2 is the stress tensor; (ii) the abelian Toda theory where the operators dual to the Toda scalars are the W -algebra generators; (iii) the non-abelian Toda theory where the Liouville field is dual to the stress tensor while the extra gauged WZW theory scalars are dual to non-abelian par...