The tradeoff between analyzability and expressiveness is a key factor when choosing a suitable dataflow model of computation (MoC) for designing, modeling, and simulating applications considering a formal base. A large number of techniques and analysis tools exist for static dataflow models, such as synchronous dataflow. However, they cannot express the dynamic behavior required for more dynamic applications in signal streaming or to model runtime reconfigurable systems. On the other hand, dynamic dataflow models like Kahn process networks sacrifice analyzability for expressiveness. Scenario-aware dataflow (SADF) is an excellent tradeoff providing sufficient expressiveness for dynamic systems, while still giving access to powerful analysis ...