We consider the problem of estimating the relationship between a response variable and a set of explanatory variates. We suppose a set of parametric forms as candidates for the aforementioned regression. Wavelet regression is used as auxiliary for the choice of the most appropriate parametric form of the model, particularly for the cases of nonlinear and generalized linear models. The use of a wavelet method for the choice of the most appropriate parametric relationship is interesting in practice for four main reasons. The first is that it provides a statistically sound method to choose the 'best' parametric model for a data set, given that no pre-determined regression form nor probability distribution are assumed to be known. On the other ...