Les algorithmes de bandits-manchots pour les systèmes de recommandation sensibles au contexte font aujourd’hui l’objet de nombreuses études. Afin de répondre aux enjeux de cette thématique, les contributions de cette thèse sont organisées autour de 3 axes : 1) les systèmes de recommandation ; 2) les algorithmes de bandits-manchots (contextuels et non contextuels) ; 3) le contexte. La première partie de nos contributions a porté sur les algorithmes de bandits-manchots pour la recommandation. Elle aborde la diversification des recommandations visant à améliorer la précision individuelle. La seconde partie a porté sur la capture de contexte, le raisonnement contextuel pour les systèmes de recommandation d’événements culturels dans la ville int...
Recommendation algorithms have been investigated and employed by many important companies in the pas...
Traditional recommendation systems (RecSys) suffer from two problems: the exploitation-exploration d...
In this PhD thesis, we study the optimization of recommender systems with the objective of providing...
Nowadays, Multi-Armed Bandit algorithms for context-aware recommendation systems are extensively stu...
International audienceDepuis longtemps, les systèmes de recommandation aident les utilisateurs à cho...
Abstract—In our modern ubiquitously connected world the amount of ever available product and service...
International audienceRecommendations have long been a means of helping users select services. In a ...
With the rise in volume of data from various sources, we have an increasing need of recommender syst...
Recommender systems are software tools and techniques providing suggestions and recommendations for ...
Abstract. Context-aware recommendation (CARS) has been shown to be an effective approach to recommen...
Context-aware recommender systems (CARS) generate more relevant recommendations by adapting them to...
Abstract — Recommender Systems have been/are being researched and deployed extensively in various di...
Notre travail concerne les systèmes d’aide à la visite de musée et l’accès au patrimoine culturel. L...
Les systèmes de recommandation actuels ont besoin de recommander des objets pertinents aux utilisate...
Context Aware Recommender Systems (CARS) have become an important research area since its introducti...
Recommendation algorithms have been investigated and employed by many important companies in the pas...
Traditional recommendation systems (RecSys) suffer from two problems: the exploitation-exploration d...
In this PhD thesis, we study the optimization of recommender systems with the objective of providing...
Nowadays, Multi-Armed Bandit algorithms for context-aware recommendation systems are extensively stu...
International audienceDepuis longtemps, les systèmes de recommandation aident les utilisateurs à cho...
Abstract—In our modern ubiquitously connected world the amount of ever available product and service...
International audienceRecommendations have long been a means of helping users select services. In a ...
With the rise in volume of data from various sources, we have an increasing need of recommender syst...
Recommender systems are software tools and techniques providing suggestions and recommendations for ...
Abstract. Context-aware recommendation (CARS) has been shown to be an effective approach to recommen...
Context-aware recommender systems (CARS) generate more relevant recommendations by adapting them to...
Abstract — Recommender Systems have been/are being researched and deployed extensively in various di...
Notre travail concerne les systèmes d’aide à la visite de musée et l’accès au patrimoine culturel. L...
Les systèmes de recommandation actuels ont besoin de recommander des objets pertinents aux utilisate...
Context Aware Recommender Systems (CARS) have become an important research area since its introducti...
Recommendation algorithms have been investigated and employed by many important companies in the pas...
Traditional recommendation systems (RecSys) suffer from two problems: the exploitation-exploration d...
In this PhD thesis, we study the optimization of recommender systems with the objective of providing...