Fuzzy rule interpolation is an important technique for performing inference with sparse rule bases. Even when a given observation has no overlap with the antecedent values of any existing rules, fuzzy rule interpolation may still derive a conclusion. In particular, the recently proposed rough-fuzzy rule interpolation offers greater flexibility in handling different levels of uncertainty that may be present in sparse rule bases and observations. Nevertheless, in practical applications with inter-connected subsets of rules, situations may arise where a crucial antecedent of observation is absent, either due to human error or difficulty in obtaining data, while the associated conclusion may be derivedaccording to alternative rules or even obse...