International audienceCurrent understanding of phosphorus (P) cycling in soils can be enhanced by integrating previously discrete findings concerning P speciation, exchange kinetics, and the underlying biological and geochemical processes. Here, we combine sequential extraction with P K-edge X-ray absorption spectroscopy and isotopic methods (P-33 and O-18 in phosphate) to characterize P cycling on a climatic gradient in Hawaii. We link P pools to P species and estimate the turnover times for commonly considered P pools. Dissolved P turned over in seconds, resin-extractable P in minutes, NaOH-extractable inorganic P in weeks to months, and HCl-extractable P in years to millennia. Furthermore, we show that in arid-zone soils, some primary mi...