The present paper is the first piece of a series whose aim is to develop an approach to ontology and metaontology through category theory. We exploit the theory of elementary toposes to claim that a satisfying ``theory of existence'', and more at large ontology itself, can both be obtained through category theory. In this perspective, an ontology is a mathematical object: it is a category, the universe of discourse in which our mathematics (intended at large, as a theory of knowledge) can be deployed. The internal language that all categories possess prescribes the modes of existence for the objects of a fixed ontology/category. This approach resembles, but is more general than, fuzzy logics, as most choices of $\clE$ and thus of $\Omega...