In this article, we present an alternative approach to show a generalization of Siegel's lemma which is an essential tool in Diophantine problems. Our main statement contains the so-called analytic Siegel's lemma as well as the Bombieri-Vaaler lemma. Our proof avoids relying on the ordinary geometry of numbers
Consider a real matrix $\Theta$ consisting of rows $(\theta_{i,1},\ldots,\theta_{i,n})$, for $1\leq ...
AbstractLet K be a number field, and let W be a subspace of KN, N⩾1. Let V1,…,VM be subspaces of KN ...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
In this article, we present an alternative approach to show a generalization of Siegel's lemma which...
In this article, we present an alternative approach to show a generalization of Siegel's lemma which...
Siegel\u27s lemma in its simplest form is a statement about the existence of small-size solutions t...
The subject of the work is geometry of numbers, which uses geometric arguments in n-dimensional eucl...
International audienceWe define a Siegel field to be a subfield K of the algebraic numbers over whic...
International audienceWe define a Siegel field to be a subfield K of the algebraic numbers over whic...
International audienceWe define a Siegel field to be a subfield K of the algebraic numbers over whic...
AbstractIn this paper we present a new proof, involving so-called nonstandard arguments, of Siegel's...
Let G be a reductive group defined over Q and let S be a Siegel set in G ( R ) . The Siegel property...
textThis dissertation addresses two problems in diophantine number theory: (1) an analogue of class...
We extend the Bombieri-Siegel formula, in the geometry of numbers. Our extension involves a lattice ...
AbstractLet K be a number field, and let W be a subspace of KN, N⩾1. Let V1,…,VM be subspaces of KN ...
Consider a real matrix $\Theta$ consisting of rows $(\theta_{i,1},\ldots,\theta_{i,n})$, for $1\leq ...
AbstractLet K be a number field, and let W be a subspace of KN, N⩾1. Let V1,…,VM be subspaces of KN ...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
In this article, we present an alternative approach to show a generalization of Siegel's lemma which...
In this article, we present an alternative approach to show a generalization of Siegel's lemma which...
Siegel\u27s lemma in its simplest form is a statement about the existence of small-size solutions t...
The subject of the work is geometry of numbers, which uses geometric arguments in n-dimensional eucl...
International audienceWe define a Siegel field to be a subfield K of the algebraic numbers over whic...
International audienceWe define a Siegel field to be a subfield K of the algebraic numbers over whic...
International audienceWe define a Siegel field to be a subfield K of the algebraic numbers over whic...
AbstractIn this paper we present a new proof, involving so-called nonstandard arguments, of Siegel's...
Let G be a reductive group defined over Q and let S be a Siegel set in G ( R ) . The Siegel property...
textThis dissertation addresses two problems in diophantine number theory: (1) an analogue of class...
We extend the Bombieri-Siegel formula, in the geometry of numbers. Our extension involves a lattice ...
AbstractLet K be a number field, and let W be a subspace of KN, N⩾1. Let V1,…,VM be subspaces of KN ...
Consider a real matrix $\Theta$ consisting of rows $(\theta_{i,1},\ldots,\theta_{i,n})$, for $1\leq ...
AbstractLet K be a number field, and let W be a subspace of KN, N⩾1. Let V1,…,VM be subspaces of KN ...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...