设X是线性空间,U是X的凸子集,\varepsilon是非负实数.称函数f:U\rightarrow\mathbb{R}为~$\varepsilon$-凸函数,若对任意x,y\inU,t\in[0,1],满足 f(tx+(1-t)y)\leq~tf(x)+(1-t)f(y)+\varepsilon. 我们已经知道,若X=\mathbb{R}^n,则对U上任何\varepsilon-凸函数f,存在凸函数g:U\rightarrow\mathbb{R}及常数\kappa(n)>0,使得对任意x\inU,有 g(x)\leqf(x)\leqg(x)+\kappa(n)\varepsilon. ...Let X be a linear space,\,U\subseteq X be a convex set, and let \varepsilon be a nonnegative real number. A function f:U\longrightarrow \mathbb{R} is said to be \varepsilon-convex, if it satisfies f(tx+(1-t)y)0, such that \begin{align*} &g(x)\leq f(x)\leq g(x)+\kappa(n)\varepsilon, \end{align*} for all x\in U.In 2002, S.J. Robert, R. Howard and J.W. Robert further proved the const...学位:理学硕士院系专业:数学科学学院_基础数学学号:1902014115259
In the field of nonlinear program-ming (in continuous variables) convex analysis [22, 23] plays a pi...
AbstractWe characterize best simultaneous approximation from convex sets, in terms of onesided Gatea...
International audienceWe provide a numerical procedure to compute uniform (convex) approximations {f...
Hyers and Ulam proved a stability result for convex functions, defined in a subset of W . Here we gi...
AbstractLet n⩾1 and B⩾2. A real-valued function f defined on the n-simplex Δn is approximately conve...
AbstractLet M be a normed linear space, and {Mn}1∞ a sequence of increasing finite dimensional subsp...
قدم بعض الباحثين المبرهنات المباشرة للتقريب المحدب والمتغير التحدب للدوال المستمرة المعرفة على الفتر...
Convex analysis is a branch of mathematics that studies convex sets, convex functions, and convex ex...
Let X be a real normed space, V be a subset of X and α: [0, ∞) → [0, ∞] be a nondecreasing function....
设 Banach空间 E具有等价二次严格凸范数 ,f为其对偶空间 E*上的 w*-下半连续 Lips-chitz凸函数 ,该文证明了 E*上存在 w* -下半连续且很光滑点集稠密 (从而在稠子集上 G...
碩士[[abstract]]若f為區間I上的連續正函數,且a,b∈I ,本文研究兩個函數 H(a,b;t)=frac{1}{b-a}int_{a}^{b}f(tx+(1-t)frac{a+b}{2})...
AbstractWe consider the problem of multivariate convex approximation by positive linear operators. L...
Let C[a, b] be the space of continuous functions on [a, b] endowed with the uniform norm llƒll ∞ = s...
AbstractLet X = C[0, 1] and let b be the set of continuous convex functions on [0, 1]. If ƒ ϵ X, the...
AbstractA convex function f given on [−1, 1] can be approximated in Lp, 1 < p < ∞, by convex polynom...
In the field of nonlinear program-ming (in continuous variables) convex analysis [22, 23] plays a pi...
AbstractWe characterize best simultaneous approximation from convex sets, in terms of onesided Gatea...
International audienceWe provide a numerical procedure to compute uniform (convex) approximations {f...
Hyers and Ulam proved a stability result for convex functions, defined in a subset of W . Here we gi...
AbstractLet n⩾1 and B⩾2. A real-valued function f defined on the n-simplex Δn is approximately conve...
AbstractLet M be a normed linear space, and {Mn}1∞ a sequence of increasing finite dimensional subsp...
قدم بعض الباحثين المبرهنات المباشرة للتقريب المحدب والمتغير التحدب للدوال المستمرة المعرفة على الفتر...
Convex analysis is a branch of mathematics that studies convex sets, convex functions, and convex ex...
Let X be a real normed space, V be a subset of X and α: [0, ∞) → [0, ∞] be a nondecreasing function....
设 Banach空间 E具有等价二次严格凸范数 ,f为其对偶空间 E*上的 w*-下半连续 Lips-chitz凸函数 ,该文证明了 E*上存在 w* -下半连续且很光滑点集稠密 (从而在稠子集上 G...
碩士[[abstract]]若f為區間I上的連續正函數,且a,b∈I ,本文研究兩個函數 H(a,b;t)=frac{1}{b-a}int_{a}^{b}f(tx+(1-t)frac{a+b}{2})...
AbstractWe consider the problem of multivariate convex approximation by positive linear operators. L...
Let C[a, b] be the space of continuous functions on [a, b] endowed with the uniform norm llƒll ∞ = s...
AbstractLet X = C[0, 1] and let b be the set of continuous convex functions on [0, 1]. If ƒ ϵ X, the...
AbstractA convex function f given on [−1, 1] can be approximated in Lp, 1 < p < ∞, by convex polynom...
In the field of nonlinear program-ming (in continuous variables) convex analysis [22, 23] plays a pi...
AbstractWe characterize best simultaneous approximation from convex sets, in terms of onesided Gatea...
International audienceWe provide a numerical procedure to compute uniform (convex) approximations {f...