分数阶微分方程在许多应用科学上比整数阶微分方程更能准确地模拟自然现象.本文考虑分数阶反应-扩散方程.将一阶的时间偏导数用Caputo分数阶导数替换,并给出了一个隐式的差分格式.利用能量方法给出此差分格式的稳定性与收敛性证明,最后用数值例子说明差分格式是有效的.Fractional differential equations can more correctly simulate many phenomena contrasting with integer differential equations in lost of applied science.In this paper,a time-fractional reaction-dispersion equation was considered which the first order derivative was replaced by a Caputo fractional derivative,and an implicit difference scheme was given.Stability and convergence were proved by using energy method.A numerical example demonstrates the difference method is effective.国家自然科学基金(10271098)资
In this paper, a finite difference scheme is presented for time fractional advection diffusion equat...
Дифузионо-таласна једначина разломљеног реда по веременској променљивој добија се из класичне дифузи...
1 引言分数阶微分方程产生于一些反常扩散模型,已经被利用于模拟在工程,物理,化学和其它科学领域的许多现象.目前已有许多研究专家学者[1][2][3][4]从理论上对方程进行了研究.数值解方面,刘发旺教...
当前,对含有非整数阶导数和积分的方程的研究正引起越来越多学者的关注,这类分数阶导数和积分将广泛应用于科学和工程的各个领域.在标准扩散方程中用α(0<α≤1)阶分数阶导数替代一阶导数,用β(0<β≤2)...
The aim of this paper deals with the application of Half-Sweep Accelerated Over- Relaxation (HSAOR) ...
In this paper we are concerned with the numerical solution of a diffusion equation in which the time...
A Galilei invariant fractional advection diffusion equation with initial-boundary conditions is cons...
We develop a fully discrete scheme for time-fractional diffusion equations by using a finite differ...
We present a new numerical tool to solve partial differential equations involving Caputo derivative...
AbstractA one-dimensional fractional diffusion model is considered, where the usual second order der...
In this paper, we derive an implicit finite difference approximation equation of the one-dimensional...
在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二...
In this paper, we consider a time fractional diffusion equation on a\ud finite domain. The equation ...
학위논문 (석사)-- 서울대학교 대학원 : 수학교육과, 2012. 2. 정상권.비선형 항을 포한하는 프랙셔널 분산 방정식은 자연현상에 관한 연구에 유용한 도구이다. 이 논문에서는 ...
We present a new numerical tool to solve partial differential equations involving Caputo derivative...
In this paper, a finite difference scheme is presented for time fractional advection diffusion equat...
Дифузионо-таласна једначина разломљеног реда по веременској променљивој добија се из класичне дифузи...
1 引言分数阶微分方程产生于一些反常扩散模型,已经被利用于模拟在工程,物理,化学和其它科学领域的许多现象.目前已有许多研究专家学者[1][2][3][4]从理论上对方程进行了研究.数值解方面,刘发旺教...
当前,对含有非整数阶导数和积分的方程的研究正引起越来越多学者的关注,这类分数阶导数和积分将广泛应用于科学和工程的各个领域.在标准扩散方程中用α(0<α≤1)阶分数阶导数替代一阶导数,用β(0<β≤2)...
The aim of this paper deals with the application of Half-Sweep Accelerated Over- Relaxation (HSAOR) ...
In this paper we are concerned with the numerical solution of a diffusion equation in which the time...
A Galilei invariant fractional advection diffusion equation with initial-boundary conditions is cons...
We develop a fully discrete scheme for time-fractional diffusion equations by using a finite differ...
We present a new numerical tool to solve partial differential equations involving Caputo derivative...
AbstractA one-dimensional fractional diffusion model is considered, where the usual second order der...
In this paper, we derive an implicit finite difference approximation equation of the one-dimensional...
在有限区域内考虑具有初边值问题的Riesz空间分数阶扩散方程,传统扩散方程中的二阶空间导数由Riesz分数阶导数α(1<α≤2)代替就得到Riesz空间分数阶扩散方程.我们提出一个在时间和空间都具有二...
In this paper, we consider a time fractional diffusion equation on a\ud finite domain. The equation ...
학위논문 (석사)-- 서울대학교 대학원 : 수학교육과, 2012. 2. 정상권.비선형 항을 포한하는 프랙셔널 분산 방정식은 자연현상에 관한 연구에 유용한 도구이다. 이 논문에서는 ...
We present a new numerical tool to solve partial differential equations involving Caputo derivative...
In this paper, a finite difference scheme is presented for time fractional advection diffusion equat...
Дифузионо-таласна једначина разломљеног реда по веременској променљивој добија се из класичне дифузи...
1 引言分数阶微分方程产生于一些反常扩散模型,已经被利用于模拟在工程,物理,化学和其它科学领域的许多现象.目前已有许多研究专家学者[1][2][3][4]从理论上对方程进行了研究.数值解方面,刘发旺教...