International audienceThe formation and decay of the thermal spark generated by a single nanosecond high-voltage pulse between pin electrodes are characterized in this study. The influence of air pressure in the range 50-1000 mbar is investigated at 300 K. By performing short-gate imaging and Optical Emission Spectroscopy (OES), we find that the thermal sparks exhibit an intense emission from excited electronic states of N+, in contrast with non-thermal sparks for which the emission is dominated by electronic transitions of N2. Spark thermalization consists of the following steps: (i) partial ionization of the plasma channel accompanied by N2 emission, (ii) creation of a fully ionized filament at the cathode characterized by N+ emission, (i...