International audienceThe Laser Interferometer Space Antenna (LISA) is slated for launch in the early 2030s. A main target of the mission is massive black hole binaries that have an expected detection rate of ∼20 yr-1. We present a parameter estimation analysis for a variety of massive black hole binaries. This analysis is performed with a graphics processing unit (GPU) implementation comprising the phenomhm waveform with higher-order harmonic modes and aligned spins; a fast frequency-domain LISA detector response function; and a GPU-native likelihood computation. The computational performance achieved with the GPU is shown to be 500 times greater than with a similar CPU implementation, which allows us to analyze full noise-infused injecti...