We describe the development of an automatic tool to assess the readability of text documents. Our readability assessment tool predicts elementary school grade levels of texts with high accuracy. The tool is developed using supervised machine learning techniques on text corpora annotated with grade levels and other indicators of reading difficulty. Various independent variables or features are extracted from texts and used for automatic classification. We systematically explore different feature inventories and evaluate the grade-level prediction of the resulting classifiers. Our evaluation comprises well-known features at various linguistic levels from the existing literature, such as those based on language modeling, part-of-speech, syntac...