Oxygen isotopes in tree rings (δ18OTR) are widely used to reconstruct past climates. However, the complexity of climatic and biological processes controlling isotopic fractionation is not yet fully understood. Here, we use the MAIDENiso model to decipher the variability in δ18OTR of two temperature-sensitive species of relevant palaeoclimatological interest (Picea mariana and Nothofagus pumilio) and growing at cold high latitudes in North and South America. In this first modelling study on δ18OTR values in both northeastern Canada (53.86° N) and western Argentina (41.10° S), we specifically aim at (1) evaluating the predictive skill of MAIDENiso to simulate δ18OTR values, (2) identifying the physical processes controlling δ18OTR by mechanis...