We show that the Longest Common Prefix Array of a text collection of total size n on alphabet [1, σ] can be computed from the Burrows-Wheeler transformed collection in O(n log σ) time using o(n log σ) bits of working space on top of the input and output. Our result improves (on small alphabets) and generalizes (to string collections) the previous solution from Beller et al., which required O(n) bits of extra working space. We also show how to merge the BWTs of two collections of total size n within the same time and space bounds. The procedure at the core of our algorithms can be used to enumerate suffix tree intervals in succinct space from the BWT, which is of independent interest. An engineered implementation of our first algorithm on DN...