Massive Open Online Courses (MOOCs) are becoming an increasingly popular choice for education but, to reach their full extent, they require the resolution of new issues like assessing students at scale. A feasible approach to tackle this problem is peer assessment, in which students also play the role of assessor for assignments submitted by others. Unfortunately, students are unreliable graders so peer assessment often does not deliver accurate results. In order to mitigate this issue, we propose a new model for ordinal peer assessment based on the principles of fuzzy group decision making. In our approach, each student is asked to rank a few random submissions from the best to the worst and to specify, with a set of intuitive labels, at w...