This thesis examines the issue of detecting components or features within time series data in automatic procedures. We begin by introducing the concept of Wavelets and briefly show their usage as a tool for detection. This leads to our first contribution which is a novel method using wavelets for identifying correlation structures in time series data which are often ambiguous with very different contexts. Using the properties of the wavelet transform we show the ability to distinguish between short memory models with changepoints and long memory models. The next two Chapters consider seasonality within data, which is often present in time series used in Offical Statistics. We first describe the historical evolution of identification of seas...