The spread of an $n\times n$ complex matrix $B$ with eigenvalues $\beta _{1},\beta _{2},\ldots ,\beta _{n}$ is defined by \begin{equation*} s\left( B\right) =\max_{i,j}\left\vert \beta _{i}-\beta _{j}\right\vert , \end{equation*}% where the maximum is taken over all pairs of eigenvalues of $B$. Let $G$ be a graph on $n$ vertices. The concept of Laplacian spread of $G$ is defined by the difference between the largest and the second smallest Laplacian eigenvalue of $G$. In this work, by combining old techniques of interlacing eigenvalues and rank $1$ perturbation matrices new lower bounds on the Laplacian spread of graphs are deduced, some of them involving invariant parameters of graphs, as it is the case of the bandwidth, indepen...