Many comparative studies on the performance of machine learning (ML) techniques for web cost estimation (WCE) have been reported in the literature. However, not much attention have been given to understanding the conceptual differences and similarities that exist in the application of these ML techniques for WCE, which could provide credible guide for upcoming practitioners and researchers in predicting the cost of new web projects. This paper presents a comparative analysis of three prominent machine learning techniques – Case-Based Reasoning (CBR), Support Vector Regression (SVR) and Artificial Neural Network (ANN) – in terms of performance, applicability, and their conceptual differences and similarities for WCE by using data obtained fr...