We aim at evaluating elementary and special functions using small tables and small, rectangular, multipliers. To do that, we show how accurate polynomial approximations whose order-1 coefficients are small in size (a few bits only) can be computed. We compare the obtained results with similar work in the recent literature.Nous cherchons à´évaluer des fonctions élémentaires et spéciales en utilisant de petites tables et de petits multiplicateurs rectangulaires. A cette fin, nous montrons comment construire des approximations polynomiales précises, dont le coefficient d’ordre 1 est de petite taille. Nous comparons les résultats obtenus avec des travaux récents portant sur le même sujet
This paper deals with the computation of reciprocals, square roots, inverse square roots, and some e...
All endeavors in science use math libraries to approximate elementary functions (e.g., ln(x) or e^x)...
A table-based method for high-speed function approximation in single-precision floating-point format...
We aim at evaluating elementary and special functions using small tables and small, rectangular, mul...
(eng) We aim at evaluating elementary and special functions using small tables and small, rectangula...
We aim at evaluating elementary and special functions using small tables and small, rectangular, mul...
Many general table-based methods for the evaluation in hardware of elementary functions have been pu...
This paper presents a new scheme for the hardware evaluation of elementary functions, based on a pie...
This paper presents small FPGA implementations of low precision polynomial approximations of functio...
(eng) This paper presents small FPGA implementations of low precision polynomial approximations of f...
(eng) When implementing regular enough functions (e.g., elementary or special functions) on a comput...
For purposes of evaluation and manipulation, mathematical functions f are commonly replaced by appro...
Publisher's version at http://portal.acm.org/citation.cfm?doid=1141885.1141890International audience...
Quand on veut évaluer ou manipuler une fonction mathématique f, il est fréquent de la remplacer par ...
This paper deals with the computation of reciprocals, square roots, inverse square roots, and some e...
All endeavors in science use math libraries to approximate elementary functions (e.g., ln(x) or e^x)...
A table-based method for high-speed function approximation in single-precision floating-point format...
We aim at evaluating elementary and special functions using small tables and small, rectangular, mul...
(eng) We aim at evaluating elementary and special functions using small tables and small, rectangula...
We aim at evaluating elementary and special functions using small tables and small, rectangular, mul...
Many general table-based methods for the evaluation in hardware of elementary functions have been pu...
This paper presents a new scheme for the hardware evaluation of elementary functions, based on a pie...
This paper presents small FPGA implementations of low precision polynomial approximations of functio...
(eng) This paper presents small FPGA implementations of low precision polynomial approximations of f...
(eng) When implementing regular enough functions (e.g., elementary or special functions) on a comput...
For purposes of evaluation and manipulation, mathematical functions f are commonly replaced by appro...
Publisher's version at http://portal.acm.org/citation.cfm?doid=1141885.1141890International audience...
Quand on veut évaluer ou manipuler une fonction mathématique f, il est fréquent de la remplacer par ...
This paper deals with the computation of reciprocals, square roots, inverse square roots, and some e...
All endeavors in science use math libraries to approximate elementary functions (e.g., ln(x) or e^x)...
A table-based method for high-speed function approximation in single-precision floating-point format...