International audienceThe contribution deals with timestepping schemes for nonsmooth dynamical systems. Traditionally, these schemes are locally of integration order one, both in non-impulsive and impulsive periods. This is inefficient for applications with infinitely many events but large non-impulsive phases like circuit breakers, valve trains or slider-crank mechanisms. To improve the behaviour during non-impulsive episodes, we start activities twofold. First, we include the classic schemes in time discontinuous Galerkin methods. Second, we split non-impulsive and impulsive force propagation. The correct mathematical setting is established with mollifier functions, Clenshaw-Curtis quadrature rules and an appropriate impact representation...