This paper considers estimators of survivor functions subject to a stochastic ordering constraint based on right censored data. We present the constrained nonparametric maximum likelihood estimator (C‐NPMLE) of the survivor functions in one‐and two‐sample settings where the survivor distributions could be discrete or continuous and discuss the non‐uniqueness of the estimators. We also present a computationally efficient algorithm to obtain the C‐NPMLE. To address the possibility of non‐uniqueness of the C‐NPMLE of $S_1(t)$ when $S_1(t)le S_2(t)$ , we consider the maximum C‐NPMLE (MC‐NPMLE) of $S_1(t)$ . In the one‐sample case with arbitrary upper bound survivor function $S_2(t)$ , we present a novel and efficient algorithm for find...
International audienceRésumé. Soient X t 1 , . . . , X tn des observations indépendantes associées a...
Nous proposons des tests et régions de confiance exacts pour des modèles comportant des variables in...
À cause des singularités de la fonction de vraisemblance, l'approche par maximum de vraisemblance po...
AbstractAn optimized robust filtering algorithm for uncertain discrete-time systems is presented. To...
La loi exponentielle est très répandue en hydrologie : elle est faiblement paramétrée, de mise en œu...
We introduce the BLP-2LASSO model, which augments the classic BLP (Berry, Levinsohn, and Pakes, 1995...
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models w...
In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distr...
International audienceSome crucial time series of market data, such as electricity spot prices, exhi...
First, we study a class of stochastic differential equations driven by a possibly tempered Lévy pro...
Notre étude est motivée par un problème d'évaluation de la biomasse, c'est à dire de la densité des...
This paper develops a method informed by data and models to recover information about investor belie...
Let Y be a Gaussian vector of ℝn of mean s and diagonal covariance matrix Γ. Our aim is to estimate ...
Standard empirical investigations of jump dynamics in returns and volatility are fairly complicated ...
International audienceIn large-scale signicance analysis, ignoring dependence or not is a core issue...
International audienceRésumé. Soient X t 1 , . . . , X tn des observations indépendantes associées a...
Nous proposons des tests et régions de confiance exacts pour des modèles comportant des variables in...
À cause des singularités de la fonction de vraisemblance, l'approche par maximum de vraisemblance po...
AbstractAn optimized robust filtering algorithm for uncertain discrete-time systems is presented. To...
La loi exponentielle est très répandue en hydrologie : elle est faiblement paramétrée, de mise en œu...
We introduce the BLP-2LASSO model, which augments the classic BLP (Berry, Levinsohn, and Pakes, 1995...
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models w...
In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distr...
International audienceSome crucial time series of market data, such as electricity spot prices, exhi...
First, we study a class of stochastic differential equations driven by a possibly tempered Lévy pro...
Notre étude est motivée par un problème d'évaluation de la biomasse, c'est à dire de la densité des...
This paper develops a method informed by data and models to recover information about investor belie...
Let Y be a Gaussian vector of ℝn of mean s and diagonal covariance matrix Γ. Our aim is to estimate ...
Standard empirical investigations of jump dynamics in returns and volatility are fairly complicated ...
International audienceIn large-scale signicance analysis, ignoring dependence or not is a core issue...
International audienceRésumé. Soient X t 1 , . . . , X tn des observations indépendantes associées a...
Nous proposons des tests et régions de confiance exacts pour des modèles comportant des variables in...
À cause des singularités de la fonction de vraisemblance, l'approche par maximum de vraisemblance po...