The majorize-minimize (MM) optimization technique has received considerable attention in signal and image processing applications, as well as in statistics literature. At each iteration of an MM algorithm, one constructs a tangent majorant function that majorizes the given cost function and is equal to it at the current iterate. The next iterate is obtained by minimizing this tangent majorant function, resulting in a sequence of iterates that reduces the cost function monotonically. A well-known special case of MM methods are expectation-maximization algorithms. In this paper, we expand on previous analyses of MM, due to Fessler and Hero, that allowed the tangent majorants to be constructed in iteration-dependent ways. Also, this paper over...