This manuscript presents a synthesis of my research work over the last few years. It discusses my contributions to the study of the Bayes posterior distribution in statistical models with many or infinitely many parameters, such as nonparametric and semiparametric models. We follow a three-part outline. The first two chapters are a synthesis of the obtained results on convergence rates of posterior distributions. The third chapter considers limiting shape results. The Bernstein-von Mises theorem is established in infinite dimensions, in both semiparametric and nonparametric frameworks.Ce manuscrit présente mes travaux en statistique bayésienne non-paramétrique. Il s'agit d'étudier le comportement de la mesure a posteriori, une mesure aléato...
In this PhD thesis we present the results we obtained in three linked fields: data compression for i...
Dans cette thèse de doctorat, nous présentons les travaux que nous avons effectués dans trois direct...
We characterize conjugate nonparametric Bayesian models as pro-jective limits of conjugate, finite-d...
This manuscript presents a synthesis of my research work over the last few years. It discusses my co...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
This paper introduces a new approach to the study of rates of convergence for posterior distribution...
This thesis is divided in two parts on rather different aspects of Bayesian statistics. In the first...
We consider the asymptotic behavior of posterior distributions and Bayes estimators based on observa...
Cet article est un article de revue et présente un certain nombre de résultats récents sur les propr...
We consider the asymptotic behavior of posterior distributions and Bayes estimators for infinite-dim...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
We review the Bayesian theory of semiparametric inference following Bickel and Kleijn (2012) [5] and...
The first main focus is the sparse Gaussian sequence model. An Empirical Bayes approach is used on t...
Rates of convergence of Bayesian nonparametric procedures are expressed as the maximum between two r...
© Institute of Mathematical Statistics, 2014. We study the asymptotic behaviour of the posterior dis...
In this PhD thesis we present the results we obtained in three linked fields: data compression for i...
Dans cette thèse de doctorat, nous présentons les travaux que nous avons effectués dans trois direct...
We characterize conjugate nonparametric Bayesian models as pro-jective limits of conjugate, finite-d...
This manuscript presents a synthesis of my research work over the last few years. It discusses my co...
This dissertation focuses on the frequentist properties of Bayesian procedures in a broad spectrum o...
This paper introduces a new approach to the study of rates of convergence for posterior distribution...
This thesis is divided in two parts on rather different aspects of Bayesian statistics. In the first...
We consider the asymptotic behavior of posterior distributions and Bayes estimators based on observa...
Cet article est un article de revue et présente un certain nombre de résultats récents sur les propr...
We consider the asymptotic behavior of posterior distributions and Bayes estimators for infinite-dim...
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches ...
We review the Bayesian theory of semiparametric inference following Bickel and Kleijn (2012) [5] and...
The first main focus is the sparse Gaussian sequence model. An Empirical Bayes approach is used on t...
Rates of convergence of Bayesian nonparametric procedures are expressed as the maximum between two r...
© Institute of Mathematical Statistics, 2014. We study the asymptotic behaviour of the posterior dis...
In this PhD thesis we present the results we obtained in three linked fields: data compression for i...
Dans cette thèse de doctorat, nous présentons les travaux que nous avons effectués dans trois direct...
We characterize conjugate nonparametric Bayesian models as pro-jective limits of conjugate, finite-d...