International audienceLong-memory noise is common to many areas of signal processing and can seriously confound estimation of linear regression model parameters and their standard errors. Classical autoregressive moving average (ARMA) methods can adequately address the problem of linear time invariant, short-memory errors but may be inefficient and/or insufficient to secure type 1 error control in the context of fractal or scale invariant noise with a more slowly decaying autocorrelation function. Here we introduce a novel method, called wavelet-generalized least squares (WLS), which is (to a good approximation) the best linear unbiased (BLU) estimator of regression model parameters in the context of long-memory errors. The method also prov...