This thesis introduces a unified framework for various domain decomposition methods:those with overlap, so-called Schwarz methods, and those based on Schur complements,so-called substructuring methods. It is then possible to switch with a high-level of abstractionbetween methods and to build different preconditioners to accelerate the iterativesolution of large sparse linear systems. Such systems are frequently encountered in industrialor scientific problems after discretization of continuous models. Even though thesepreconditioners naturally exhibit good parallelism properties on distributed architectures,they can prove inadequate numerical performance for complex decompositions or multiscalephysics. This lack of robustness may be alleviat...
Large-scale scientific applications and industrial simulations are nowadays fully integrated in many...
The solution of large sparse linear systems is a critical operationfor many numerical simulations. T...
International audienceScalability of parallel solvers for problems with high heterogeneities relies ...
Cette thèse présente une vision unifiée de plusieurs méthodes de décomposition de domaine : celles a...
This thesis investigates domain decomposition methods, commonly classified as either overlapping Sch...
This thesis presents a parallel resolution method for sparse linear systems which combines effective...
La résolution de grands systèmes linéaires est une des étapes les plus consommatrices en temps des s...
The objective of this thesis is to use domain decomposition methods to develop new efficient methods...
Cette thèse étudie les méthodes de décomposition de domaine généralement classées soit comme des mét...
The solution of large linear problems is one of the most time consuming kernels in many numerical si...
The solution of large linear problems is one of the most time consuming kernels in many numerical si...
Cette thèse traite d’une nouvelle classe de préconditionneurs qui ont pour but d’accélérer la résolu...
International audienceDomain decomposition methods are, alongside multigrid methods, one of the domi...
Les méthodes en simulation numérique dans le domaine de l’ingénierie pétrolière nécessitent la résol...
This thesis presents a work on iterative methods for solving linear systems that aim at reducing the...
Large-scale scientific applications and industrial simulations are nowadays fully integrated in many...
The solution of large sparse linear systems is a critical operationfor many numerical simulations. T...
International audienceScalability of parallel solvers for problems with high heterogeneities relies ...
Cette thèse présente une vision unifiée de plusieurs méthodes de décomposition de domaine : celles a...
This thesis investigates domain decomposition methods, commonly classified as either overlapping Sch...
This thesis presents a parallel resolution method for sparse linear systems which combines effective...
La résolution de grands systèmes linéaires est une des étapes les plus consommatrices en temps des s...
The objective of this thesis is to use domain decomposition methods to develop new efficient methods...
Cette thèse étudie les méthodes de décomposition de domaine généralement classées soit comme des mét...
The solution of large linear problems is one of the most time consuming kernels in many numerical si...
The solution of large linear problems is one of the most time consuming kernels in many numerical si...
Cette thèse traite d’une nouvelle classe de préconditionneurs qui ont pour but d’accélérer la résolu...
International audienceDomain decomposition methods are, alongside multigrid methods, one of the domi...
Les méthodes en simulation numérique dans le domaine de l’ingénierie pétrolière nécessitent la résol...
This thesis presents a work on iterative methods for solving linear systems that aim at reducing the...
Large-scale scientific applications and industrial simulations are nowadays fully integrated in many...
The solution of large sparse linear systems is a critical operationfor many numerical simulations. T...
International audienceScalability of parallel solvers for problems with high heterogeneities relies ...