The main objective of this thesis is to derive and analyze the Gaussian kernel least-mean-square (LMS) algorithm within three frameworks involving single and multiple kernels, real-valued and complex-valued, non-cooperative and cooperative distributed learning over networks. This work focuses on the stochastic behavior analysis of these kernel LMS algorithms in the mean and mean-square error sense. All the analyses are validated by numerical simulations. First, we review the basic LMS algorithm, reproducing kernel Hilbert space (RKHS), framework and state-of-the-art kernel adaptive filtering algorithms. Then, we study the convergence behavior of the Gaussian kernel LMS in the case where the statistics of the elements of the so-called dictio...
International audienceIdentifying directed connectivity patterns from nodal measurements is an impor...
AbstractThe design of adaptive nonlinear filters has sparked a great interest in the machine learnin...
© Springer-Verlag Berlin Heidelberg 2015. This chapter addresses the study of kernel methods, a clas...
The main objective of this thesis is to derive and analyze the Gaussian kernel least-mean-square (LM...
L’objectif principal de cette thèse est de décliner et d’analyser l’algorithme kernel-LMS à noyau...
Abstract—Adaptive filtering algorithms operating in repro-ducing kernel Hilbert spaces have demonstr...
The kernel least-mean-square (KLMS) algorithm is an appealing tool for online identification of nonl...
The kernel least-mean-square (KLMS) algorithm is an appealing tool for online identification of nonl...
We propose an adaptive scheme for distributed learning of nonlinear functions by a network of nodes....
International audienceThe kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlin...
L'ALGORITHME LMS a filtre adaptif exige une connaissance a priori du niveau de pouvoir d'entrée pour...
Nonlinear adaptive filtering with kernels has become a topic of high interest over the last decade. ...
The kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlinear adaptive filtering...
L'apprentissage automatique a reçu beaucoup d'attention au cours des deux dernières décennies, à ...
We study generalization properties of distributed algorithms in the setting of nonparametric regress...
International audienceIdentifying directed connectivity patterns from nodal measurements is an impor...
AbstractThe design of adaptive nonlinear filters has sparked a great interest in the machine learnin...
© Springer-Verlag Berlin Heidelberg 2015. This chapter addresses the study of kernel methods, a clas...
The main objective of this thesis is to derive and analyze the Gaussian kernel least-mean-square (LM...
L’objectif principal de cette thèse est de décliner et d’analyser l’algorithme kernel-LMS à noyau...
Abstract—Adaptive filtering algorithms operating in repro-ducing kernel Hilbert spaces have demonstr...
The kernel least-mean-square (KLMS) algorithm is an appealing tool for online identification of nonl...
The kernel least-mean-square (KLMS) algorithm is an appealing tool for online identification of nonl...
We propose an adaptive scheme for distributed learning of nonlinear functions by a network of nodes....
International audienceThe kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlin...
L'ALGORITHME LMS a filtre adaptif exige une connaissance a priori du niveau de pouvoir d'entrée pour...
Nonlinear adaptive filtering with kernels has become a topic of high interest over the last decade. ...
The kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlinear adaptive filtering...
L'apprentissage automatique a reçu beaucoup d'attention au cours des deux dernières décennies, à ...
We study generalization properties of distributed algorithms in the setting of nonparametric regress...
International audienceIdentifying directed connectivity patterns from nodal measurements is an impor...
AbstractThe design of adaptive nonlinear filters has sparked a great interest in the machine learnin...
© Springer-Verlag Berlin Heidelberg 2015. This chapter addresses the study of kernel methods, a clas...