I will prove the existence of the Feynman quantum algorithm, polynomial and of the order $O(n^ 3)$ which inform us about the presence of the Hamiltonian cycles in a graph with cardinality n and in this case allows us to find them completely. And I will also prove the existence of the Pauli quantum algorithm with the order $O(n^ 3)$ which enable us to know whether the k-coloring graph is possible and make us this coloration if it is possible.Résumé : Je démontre l'existence d'un algorithme quantique de Feynman, polynomiale de l'ordre de $O(n^ 3)$ et permettant de nous renseigner sur la présence des cycles hamiltoniens dans un graphe de cardinal n et en l'occurrence les trouver complètement. Et je démontre aussi l'existence d'un algorithme ...
There are a number of significant problems in quantum information where there is an interesting conn...
Quantum computing—so weird, so wonderful—inspires much speculation about the line between the possib...
This paper studies the computational power of quantum computers to explore as to whether they can re...
International audienceI will prove the existence of the Feynman quantum algorithm, polynomial and ...
Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are ge...
We describe a combinatorial framework for topological quantum computation, and illustrate a number ...
This thesis’ aim is to explore improvements to, and applications of, a fundamental quantum algorithm...
Three possible quantum algorithms, for the computation of the Bollobás-Riordan-Tutte polynomial of a...
Abstract. Three possible quantum algorithms, for the computation of the Bollobás-Riordan-Tutte polyn...
AbstractIn this paper, we investigate quantum algorithms for graph colouring problems, in particular...
We provide a quantum algorithm for the exact evaluation of the Potts partition function for a certai...
Quantum computing algorithms are considered for several problems in graph theory. Classical algorith...
Projecte Final de Màster Oficial fet en col.laboració amb el Departament de Física Fonamental, Facul...
In this thesis we present new quantum algorithms for graph and algebra problems. Our quantum algorit...
Dans ce travail on obtient le nombre maximal de 3-colorations d'un graphe hamiltonien de nombre chro...
There are a number of significant problems in quantum information where there is an interesting conn...
Quantum computing—so weird, so wonderful—inspires much speculation about the line between the possib...
This paper studies the computational power of quantum computers to explore as to whether they can re...
International audienceI will prove the existence of the Feynman quantum algorithm, polynomial and ...
Motivated by algorithmic problems arising in quantum field theories whose dynamical variables are ge...
We describe a combinatorial framework for topological quantum computation, and illustrate a number ...
This thesis’ aim is to explore improvements to, and applications of, a fundamental quantum algorithm...
Three possible quantum algorithms, for the computation of the Bollobás-Riordan-Tutte polynomial of a...
Abstract. Three possible quantum algorithms, for the computation of the Bollobás-Riordan-Tutte polyn...
AbstractIn this paper, we investigate quantum algorithms for graph colouring problems, in particular...
We provide a quantum algorithm for the exact evaluation of the Potts partition function for a certai...
Quantum computing algorithms are considered for several problems in graph theory. Classical algorith...
Projecte Final de Màster Oficial fet en col.laboració amb el Departament de Física Fonamental, Facul...
In this thesis we present new quantum algorithms for graph and algebra problems. Our quantum algorit...
Dans ce travail on obtient le nombre maximal de 3-colorations d'un graphe hamiltonien de nombre chro...
There are a number of significant problems in quantum information where there is an interesting conn...
Quantum computing—so weird, so wonderful—inspires much speculation about the line between the possib...
This paper studies the computational power of quantum computers to explore as to whether they can re...