In 2002, Fatiha Alabau, Piermarco Cannarsa and Vilmos Komornik investigated the extent of asymptotic stability of the null solution for weakly coupled partially damped equations of the second order in time. The main point is that the damping operator acts only on the first component and, whenever it is bounded, the coupling is not strong enough to produce an exponential decay in the energy space associated to the conservative part of the system. As a consequence, for initial data in the energy space, the rate of decay is not exponential. Due to the nature of the result it seems at first sight impossible to obtain the asymptotic stability result by the classical Liapunov method. Surprisingly enough, this turns out to be possible and we exhib...
We study the stability of weakly coupled and partially damped systems by means of the Riesz basis ap...
A class of second-order abstract systems with memory and Dirichlet boundary conditions is investigat...
Abstract: We prove some new results regarding the boundedness, stability and attractivity of the sol...
In 2002, Fatiha Alabau, Piermarco Cannarsa and Vilmos Komornik investigated the extent of asymptotic...
A new method of constructing Liapunov functions is applied to systems described by non-linear, secon...
We investigate stability properties of indirectly damped systems of evolution equations in Hilbert ...
We prove a sharp decay rate for the total energy of two classes of systems of weakly coupled hyperbo...
A numerical method which basically utilizes the Liapunov Direct Method is presented which establishe...
This book presents a modern and self-contained treatment of the Liapunov method for stability analys...
It is established convergence to a particular equilibrium for weak solutions of abstract linear equa...
A class of second-order abstract systems with memory and Dirichlet boundary conditions is investigat...
Abstract. In this work, we study the indirect stabilization of a system of plate equations which are...
It is well known that the stability of a linear time-invariant system can be determined using a Liap...
AbstractThis paper proves the well-posedness and uniform stabilization of a nonlinear coupled system...
AbstractIn this paper, we study the stability of a system of wave equations which are weakly coupled...
We study the stability of weakly coupled and partially damped systems by means of the Riesz basis ap...
A class of second-order abstract systems with memory and Dirichlet boundary conditions is investigat...
Abstract: We prove some new results regarding the boundedness, stability and attractivity of the sol...
In 2002, Fatiha Alabau, Piermarco Cannarsa and Vilmos Komornik investigated the extent of asymptotic...
A new method of constructing Liapunov functions is applied to systems described by non-linear, secon...
We investigate stability properties of indirectly damped systems of evolution equations in Hilbert ...
We prove a sharp decay rate for the total energy of two classes of systems of weakly coupled hyperbo...
A numerical method which basically utilizes the Liapunov Direct Method is presented which establishe...
This book presents a modern and self-contained treatment of the Liapunov method for stability analys...
It is established convergence to a particular equilibrium for weak solutions of abstract linear equa...
A class of second-order abstract systems with memory and Dirichlet boundary conditions is investigat...
Abstract. In this work, we study the indirect stabilization of a system of plate equations which are...
It is well known that the stability of a linear time-invariant system can be determined using a Liap...
AbstractThis paper proves the well-posedness and uniform stabilization of a nonlinear coupled system...
AbstractIn this paper, we study the stability of a system of wave equations which are weakly coupled...
We study the stability of weakly coupled and partially damped systems by means of the Riesz basis ap...
A class of second-order abstract systems with memory and Dirichlet boundary conditions is investigat...
Abstract: We prove some new results regarding the boundedness, stability and attractivity of the sol...