Monitoring glaciers and sea-ice is a primary task to understand and quantify climate change. At the same time, it is a major topic in remote sensing due to the difficulty of performing frequent in-situ expeditions [1, 2]. In this sense, microwave sensors like Synthetic Aperture Radars (SARs) have a great potential in cryospheric observations since they can operate in absence of solar illumination (i.e. during Polar nights) and with almost any weather conditions. Moreover, long-wavelength (e.g. L- band) SAR systems are capable to penetrate several meters deep into ice bodies. Hence, they are sensitive to the ice surface characteristics as well as to sub-surface structures (including in some cases the lower ice-water interface of sea-ice). Un...