We present real, complex, and quaternionic versions of a simple randomized polynomial time algorithm to approximate the permanent of a nonnegative matrix and, more generally, the mixed discriminant of positive semidefinite matrices. The algorithm provides an unbiased estimator, which, with high probability, approximates the true value within a factor of O ( c n ), where n is the size of the matrix (matrices) and where c ≈ 0.28 for the real version, c ≈ 0.56 for the complex version, and c ≈ 0.76 for the quaternionic version. We discuss possible extensions of our method as well as applications of mixed discriminants to problems of combinatorial counting. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 29–61, 1999Peer Reviewed...