Scalable shared-memory multiprocessor systems are typically NUMA (nonuniform memory access) machines, where the exploitation of the memory hierarchy is critical to achieving high performance. Iterative data parallel loops with near-neighbor communication account for many important numerical applications. In such loops, the communication of partial results stresses the memory system performance. In this paper, we develop data placement schemes that minimize communication time where the near-neighbor interaction is determined by a stencil. Under a given loop partition, our compile-time algorithm partitions global data into four classes for each processor, with each class requiring specific consistency maintenance requirements. The ADAPT (Auto...