Two-dimensional Monte Carlo simulations of recrystallization have been carried out in the presence of incoherent and immobile particles for a range of different particle fractions, a range of stored energies and a range of densities of potential nuclei (embryos). For stored energies greater than a critical value (H/J > 1) the recrystallization front can readily pass the particles leading to a random density of particles on the front and a negligible influence of particles on the recrystallization kinetics. At lower stored energies the particles pin the recrystallization front leading to incomplete recrystallization. However at very low particle fractions, when the new grain has grown much larger than the matrix grains, before meeting any...