Polynomial evaluation is important across a wide range of application domains, so significant work has been done on accelerating its computation. The conventional algorithm, referred to as Horner's rule, involves the least number of steps but can lead to increased latency due to serial computation. Parallel evaluation algorithms such as Estrin's method have shorter latency than Horner's rule, but achieve this at the expense of large hardware overhead. This paper presents an efficient polynomial evaluation algorithm, which reforms the evaluation process to include an increased number of squaring steps. By using a squarer design that is more efficient than general multiplication, this can result in polynomial evaluation with a 57.9% latency r...