Predicting the final state of turbulent plasma relaxation is an important challenge, both in astro-physical plasmas such as the Sun's corona and in controlled thermonuclear fusion. Recent numerical simulations of plasma relaxation with braided magnetic fields identified the possibility of a novel constraint, arising from the topological degree of the magnetic field-line mapping. This constraint implies that the final relaxed state is drastically different for an initial configuration with topological degree 1 (which allows a Taylor relaxation) and one with degree 2 (which does not reach a Taylor state). Here, we test this transition in numerical resistive-magnetohydrodynamic simulations, by embedding a braided magnetic field in a linear for...