The tidal interaction between a disk and a planet leading to a planet's migration is widely believed to be the mechanism that explains the variety of orbital radii of extrasolar planets. A long-standing question is what stops the migration before planets plunge into their central stars. We propose a new, simple mechanism to significantly slow down planet migration and test it using a hybrid numerical integrator to simulate disk-planet interaction. Key to this scenario are the low-viscosity regions in protostellar disks known as dead zones. Low viscosity affects planetary migration in two ways. First, it allows a smaller mass planet to open a gap, and hence trade the faster type I migration (pre-gap-opening migration) for the slower type II ...