The concept of strong admissibility plays an important role in dialectical proof procedures for grounded semantics allowing, as it does, concise proofs that an argument belongs to the grounded extension without having necessarily to construct this extension in full. One consequence of this property is that strong admissibility (in contrast to grounded semantics) ceases to be a unique status semantics. In fact it is straightforward to construct examples for which the number of distinct strongly admissible sets is exponential in the number of arguments. We are interested in characterizing properties of collections of strongly admissible sets in the sense that any system describing the strongly admissible sets of an argument framework must sat...