While Artificial Intelligence (AI) has tremendous potential as a defense against real-world cybersecurity threats, understanding the capabilities and robustness of AI remains a fundamental challenge. This dissertation tackles problems essential to successful deployment of AI in security settings and is comprised of the following three interrelated research thrusts. (1) Adversarial Attack and Defense of Deep Neural Networks: We discover vulnerabilities of deep neural networks in real-world settings and the countermeasures to mitigate the threat. We develop ShapeShifter, the first targeted physical adversarial attack that fools state-of-the-art object detectors. For defenses, we develop SHIELD, an efficient defense leveraging stochastic image...